

TABLE OF CONTENTS

Executive summary .. 1

Introduction ... 2

Purpose of the workshop ... 3

Structure of the workshop ... 3

Areas addressed ... 3

Session I: Descriptions of european scalable engineering codes .. 5

Panels I - IV .. 7

Scalable Algorithm advance and barriers ... 7

Development approaches, including verification and validation, ease of use, and workflow
factors 8

Funding models .. 9

Intellectual property models ..10

Code maintenance and upgrade models ..11

User community models ...12

Conclusions ..13

Appendix A. Agenda ...14

Appendix B. Participants ..16

Appendix C. Presentations ...18

 International Workshop on Scalable Engineering Software 1

EXECUTIVE SUMMARY

With support from the DoD High Performance Computing Modernization Program (HPCMP)
and the Networking and Information Technology Research and Development Program
(NITRD), WTEC2, a sister company to the World Technology Evaluation Center (WTEC),
convened a workshop on June 2-3, 2010 to examine factors that encourage the development
of scalable engineering software. The workshop featured six presentations from European
organizations that have developed widely used scalable engineering codes in the disciplines
of biology/chemistry/materials, finite element analysis, weather/climate/ocean modeling,
fluid dynamics, and integrated code suites. These presentations were complemented by four
panel sessions that discussed factors affecting the development of scalable software and the
current situation in the U.S. The workshop concluded with two summarizing presentations.

The workshop was motivated by previous studies that documented the critical role of
simulation in engineering and the inability of most engineering software to utilize the power
of large computers because of the scaling barrier in engineering software: most engineering
codes in current use do not scale well beyond at most 100 processors, and some do not scale
at all. These prior studies also suggested that some European codes in general use have
achieved good scaling on realistic problems, in some cases up to several thousand processors.

Discussions at the workshop provided strong evidence that scalable engineering codes for
realistic problems can be developed that scale to hundreds, or in some cases up to thousands
of processors. However, for success it appears that several important factors must be
favorably aligned. These include an expert and committed development team that responds
to user needs, stable funding that is provided over more than a decade for development,
support and upgrades, use of scalable physics models and algorithms, availability of suitable
scalable software libraries and middleware, code licensing terms that make it cost-effective
for users to scale up their problems, regular releases that include bug-fixes, improvements,
and upgrades to the code, and a large and vibrant developer-maintained user community that
provides endorsement, support and feedback.

The European presentations provided a striking insight regarding funding: European
government agencies commonly provide long-term stable funding to companies to develop
and maintain scalable engineering codes deemed important to the country. The European
codes presented at the workshop were originally developed with government funding at
universities or government laboratories. Several of the development teams have since moved
to companies, and they have continued to receive government funding combined with private
funding. All of these codes are freely available to users who meet certain criteria (such as
nationals of the country that developed them or their collaborators.) Several are freely
available to anyone as downloadable open source. The U.S. government does not typically
fund code development in companies other than for specific government purposes, and these
codes are not usually available to general users.

International Workshop on Scalable Engineering Software 2

In general the licensing terms for European codes developed under government funding
seem more liberal than in the U.S., commonly using the open-source Gnu Public License. The
free availability of these codes may enhance their widespread acceptance and use.

INTRODUCTION

Recent studies have documented the critical importance of physics-based modeling and
simulation to the design, development, and use of engineered systems in industry and
government. However, these studies have also shown that most engineering software suffers
from a scaling barrier that seriously limits our ability to use the full power of modern highly
parallel computers to model complex engineered systems. For example, a recent study
conducted by the Council on Competitiveness under government sponsorship documented
the scaling barrier and showed that most U.S. commercial engineering codes do not scale to
use more than about one hundred processors, and in some important cases do not use
parallel processing at all.1, 2, 3

The study pointed out that research codes developed at universities and national laboratories
in several disciplines of science and engineering have achieved much greater scale-up by
employing novel scientific algorithms and improved computer science. However, for a variety
of economic, technical and organizational reasons very few of these codes have become
commercialized or seen wide use. Their existence shows that it is possible to break the
scaling barrier, but their lack of widespread use shows that, practically speaking, the scaling
barrier continues. The study concluded that federal funding patterns have changed in recent
years to discourage the types of long-term effort required to commercialize research codes.
This conclusion is supported by a National Academies study of High Performance Computing
that concluded “…from the committee’s visits to DOE sites, members got the clear impression
that there are no incentives for the transfer of codes developed at those sites to industrial use
and no significant funding to facilitate the transfer.”

 Findings by that study lead to several plausible reasons for this
scaling barrier, including lack of R&D funds for Independent Software Vendors (ISVs) to
improve their codes, lack of trained personnel, licensing and business models that discourage
use of highly scaled codes, and lack of access to highly parallel systems.

4

A more recent WTEC study, International Assessment of Research and Development in
Simulation-Based Engineering and Science, found that in some areas of science and
engineering the U.S. may be lagging in developing scalable codes, especially by comparison
with Europe and Japan.

5

1 Accelerating Innovation for Competitive Advantage: The Need for HPC Application Software Solutions, Council on
Competitiveness, July 2005,

http://www.compete.org/publications/detail/383/accelerating-innovation-for-
competitive-advantage-the-need-for-better-hpc-application-software-solutions/
2 HPC Software Study Part A: Current Market Dynamics, Council on Competitiveness, July 2005,
http://www.compete.org/publications/detail/392/hpc-software-study-part-a-current-market-dynamics/
3 HPC Software Study Part B: End-User Perspectives, Council on Competitiveness, July 2005,
http://www.compete.org/publications/detail/393/hpc-software-study-part-b-end-user-perspectives/
4 Getting Up to Speed: The Future of Supercomputing, The National Academies Press, 2004,
http://www.nap.edu/openbook.php?record_id=11148&page=191
5 International Assessment of Research and Development in Simulation-Based Engineering and Science, World
Technology Evaluation Center, 2009, http://wtec.org/sbes/SBES-GlobalFinalReport.pdf

http://www.compete.org/publications/detail/383/accelerating-innovation-for-competitive-advantage-the-need-for-better-hpc-application-software-solutions/�
http://www.compete.org/publications/detail/383/accelerating-innovation-for-competitive-advantage-the-need-for-better-hpc-application-software-solutions/�
http://www.compete.org/publications/detail/392/hpc-software-study-part-a-current-market-dynamics/�
http://www.compete.org/publications/detail/393/hpc-software-study-part-b-end-user-perspectives/�
http://www.nap.edu/openbook.php?record_id=11148&page=191�
http://wtec.org/sbes/SBES-GlobalFinalReport.pdf�

 International Workshop on Scalable Engineering Software 3

A WTEC2 study conducted in preparation for this workshop, Identification of Successful
International Models for Scalable Engineering Software, confirmed this finding and provided
additional information about scalable engineering codes.6

PURPOSE OF THE WORKSHOP

The purpose of the International Workshop on Scalable Engineering Software was to better
understand how to produce scalable engineering codes by identifying factors that are
important for their development and maintenance. To do this the workshop examined the
factors that have led to scalable European codes and compared these with current practice in
the United States. Among the areas considered were: development models including ease-of-
use and workflow factors, funding approaches, intellectual property issues, code maintenance
and upgrade approaches, and user community involvement.

STRUCTURE OF THE WORKSHOP

The agenda for the workshop is presented in Appendix I. Workshop participants are listed in
Appendix II. The agenda of the workshop included a keynote talk, five invited talks describing
European codes with good scaling properties, four panels that discussed issues in developing
scalable codes, and two summary talks. The workshop included substantial open discussion
among participants; where possible this is captured in the report.

AREAS ADDRESSED

The workshop addressed the following technical areas:

1. Characterization of code scalability: measures include benchmark runs on specific
systems, graphs showing scalability as number of processors increases, discussion of
whether the code displays weak or strong scalability up to a certain number of
processors, sustained rate in TFLOPs, or other.

2. What technical advances were required in order to achieve good scalability? These could
include better physical models, better algorithms, better computer science, etc.

3. What was the business model used in developing the code? Business models include
factors such as funding model for code development (private funding, government
funding, volunteer effort), organizational model (private company, university,
government center, volunteer community, individual), leadership model (charismatic
leader, appointed leader, steering committee, etc.), intellectual property model
(proprietary, open source, public domain, informal), sustainment model (license fees,
contributions, sustained government funding, sustained private funding, and embedding
in an ongoing research group).

6 Report on Subcontract CFS-160043-WTEC2 between Chenega Federal Systems, LLC and WTEC2. Phase I:
Identification of Successful International Models for Scalable Engineering Codes, WTEC2, 2009,
http://wtec2.com/ScalableSoftware/docs/ScalableSoftwareReportVer12.04.09.pdf

http://wtec2.com/ScalableSoftware/docs/ScalableSoftwareReportVer12.04.09.pdf�

International Workshop on Scalable Engineering Software 4

4. Measures regarding the acceptance and adoption of codes within the engineering
community: these could include discussion of reference accounts, estimates of number of
users, engineering areas where the code is most used, or other.

 International Workshop on Scalable Engineering Software 5

SESSION I: DESCRIPTIONS OF EUROPEAN SCALABLE ENGINEERING CODES

This session included six presentations of European codes chosen from the disciplines of
computational biology, chemistry, and materials science, computational finite element
analysis including structural mechanics, climate/weather/ocean modeling, computational
fluid dynamics, and integrated code suites. Each of the chosen codes is widely used and has
relatively good scaling properties; their developers release frequent upgrades and maintain
good user relations:

• Elmer – Multiphysics Open Source FEM Package, Thomas Zwinger, IT Center for Science
Ltd., Espoo, Finland

• The Met Office Unified Weather/Climate Model, Paul Selwood, UK Met Office, United
Kingdom

• HPC for Industrial Use: Code_Aster and Salome_Meca, Christophe Durand, EDF R&D,
France

• Parallelization and Scalability in OpenFOAM, Hrvoje Jasek, Wikki Ltd, United Kingdom
• DL_POLY: Software Solutions in Molecular Dynamics, I.T. Todorov & W. Smith, Daresbury

Laboratory, United Kingdom
• The Quantum ESPRESSO Distribution, Paolo Giannozzi, Universita di Udine, Italy

The speakers were asked to address six questions in their talks. The summaries of the talks
are organized in terms of the questions.

1. Please characterize the scalability of the code.
In each case scalability depends in part on the details of the simulation, such as complexity of
the included models and features such as free surfaces. However, for most of the presented
codes good scalability has been achieved on realistic problems for up to a few thousand
processors. Code_Aster scales to 100 processors, consistent with other structural mechanics
codes.

2. What technical advances were required in order to achieve good scalability?

Each of the codes relies on commonly available, external, highly optimized routines and
libraries such as MPI and OpenMP, FFT, MUMPS, BLAS, and LAPACK. Beyond that, each code
has relied on mathematical advances to increase parallelization, carefully tuned coding, and
user feedback regarding scaling success. The codes also rely on externally developed
analytical tools to identify bottlenecks and guide tuning for scalability. Some codes have used
the multiple threads capabilities of the hardware to improve scalability, and a few of them are
exploring the use of graphical processing units (GPUs) to increase parallelism. FORCHECK is
used by some for checking validity of FORTRAN code.

International Workshop on Scalable Engineering Software 6

3. What was your business model for developing this code? (Business model includes why
you developed the original code and why you decided to improve the scalability, targeted
customer base, management, schedule, team organization, funding, intellectual
property, user input, etc.)

In each case the respective government provided the initial funding for code development,
either through grants to universities or funding for R&D centers. In most cases the initial
impetus for the code was either to conduct academic research or to develop improved codes
for specific computational research projects. Continuing funding for maintenance and
improvements is mostly governmental, although some of the codes benefit from commercial
co-development activities on a project basis. This funding has been long term and usually
stable, a factor that seems important for the success of these codes. Some of the codes have
been spun out from their academic origins into companies, with continued government
funding.

Commercial co-development projects provide interesting examples of a “mixed development
strategy.” In these projects the developers work on a proprietary basis with the funding
company to apply and/or enhance the code specifically for simulation that improves the
competitive position of the funder. The developers also benefit from the project through the
experience of extending their code into new regimes. In many cases the project terms call for
release of newly developed code into the standard distribution after a negotiated period of
time.
All of the codes are free to external users, in some cases with restrictions. The most common
license is the GPL (Gnu Public License), an open source license, and the code is freely
available for download. The user communities for these codes are typically quite large,
numbering in the thousands. Aside from the UK Met Office and EDF, the team that maintains
the code is small and often loosely organized. Yet each of these codes (and their
predecessors) has endured for over a decade, and shows no sign of atrophying or
disappearing. The synergy between freely downloadable open source and large user
communities seems to be positive. Users assist with quality control and bug identification;
they also provide suggestions for improvements and through their numbers and visibility
endorse the value of the respective codes to funding organizations. The codes are given
regular updates, usually at least annually, and sometimes much more frequently.

4. Please discuss any metrics you may have regarding the acceptance and adoption of
this code within the engineering community.
The metric most commonly cited was the number of downloads and users. In several cases
the user communities are organized via user forums and other Internet facilities, training
sessions, annual conferences, etc. Users also contribute results from the code as testimonial
to its value. In some cases the user community develops and contributes back advances or
extensions to the codes. The code maintainers seem to take seriously the job of helping and
cultivating the user communities.

5. Please describe the approach you have taken with regard to verification and
validation of your code.

For several of the GPL codes verification and validation appears to come mainly from user
runs compared with other codes or experimental data. For these codes there does not seem

 International Workshop on Scalable Engineering Software 7

to be a rigorous methodology such as test suites or regression analysis. However, the
existence of large user communities helps to integrate verification/validation with bug
reports and other benefits of large scale use. EDF does internal V&V, consistent with the
stringent requirements of nuclear design. Elmer has a built-in suite of about 135 tests to be
run after each update. These can be triggered automatically along with an analysis of the
results.

PANELS I - IV

During the four panels the panelists were requested to address fifteen questions relating to
scalable code development, usage, and maintenance organized into four groups (panels). The
summaries of the panels are presented in terms of these questions.

SCALABLE ALGORITHM ADVANCE AND BARRIERS

1. What recent algorithmic advances have been important for improving scalability of
codes in your area of application? What future broadly-applicable algorithm advances
would improve scalability in your area? What are the major algorithmic barriers to
scalability in your area?
For most codes advances in parallel algorithms that reduce communications and operations
count for the specific problem have been very important. The panelists agreed that optimized
standard parallel libraries and profiling/debugging tools were also important for rapid
progress in scalability. For many of the codes, scaling above a few thousand processors on
realistic problems is proving very hard. DL_POLY has been scaled to 16K processors on an
IBM Blue Gene and 64K on a Cray XT6 before hitting I/O bottlenecks. Parallel mesh
generation is difficult, and some of the linear algebra packages have scaling limitations.
Generally the communications latency in parallel computers makes it hard to scale
unstructured problems or implicit techniques. Advances in communications speed or the
discovery of new algorithms with less need for communication could help scaling. Some
codes are exploring the use of GPUs for further speedup. However this makes the
programming model even more complicated and tends to tie the code to one architecture.
Future needs include better ways to handle I/O that is becoming a major bottleneck for some
codes, easier or more automatic unstructured grid generation and data layout techniques,
and hybrid or multi-level programming models to better handle massive parallelism. Some
developers are exploring the possibility of parallelization in the time domain to increase
scalability. For example, hyperbolic problems that are local in space and time might be
amenable to computing “patches” of space-time in parallel.

2. What tools and middleware (e.g. compilers, memory management tools such as MPI,
data layout, code optimization, performance-monitors, memory and cache use analyzers,
profilers, debuggers, etc.) have been most helpful in improving scalability of codes in
your area? What future improvements in this class of tools would be most helpful?
Developers and users rely heavily on optimizing compilers, profilers and performance
analysis tools, debuggers and other middleware to optimize their code and extend its
scalability. For most codes the main parallelizing standard is MPI. For some codes OpenMP is

International Workshop on Scalable Engineering Software 8

also used for parallelization on multicore shared-memory nodes that offer multiple execution
threads. The most common compiled languages used for scalable engineering codes include
F77, F90, C and C++, with some use of interpreted languages such as Python at the executive
level. Charm++, a parallel processing extension of C++, is used to aid load balancing and
communication optimizing. Compilers in common use for these languages include PGI, GNU,
Intel, Cray, IBM, and Lahey. Examples of middleware in common use include valgrind
(debugging/run-time check), as well as profilers including gprof (GNU), HPM Xprofiler (IBM),
craypat (Cray) and vtune (Intel.) Scalasca was mentioned as a profiler for MPI. One speaker
noted the absence of an OpenMP profiler that would show detailed statistics on performance
and overhead of OpenMP threads.

DEVELOPMENT APPROACHES, INCLUDING VERIFICATION AND VALIDATION, EASE OF
USE, AND WORKFLOW FACTORS

3. What models for code development are most suitable for your area of application?
Factors could include size and skill mix of team, management structure, and time
required for code development and maturation.
Several different models were discussed by participants, but the differences appeared to
depend more on type of institution, importance of the application to the institution, and on
available funding than on area of application. In academic settings, teams of 2-5 developers
are common, whereas in companies and national laboratories several dozen developers may
be working on large codes or suites of codes. A few of the successful codes were initially
produced by one developer, often a graduate student, who worked for several years before
releasing the first version of the code. For some academic codes researchers from different
universities may join forces to produce a common code that embodies their individual
research. In every case for large successful codes the development time is at least several
years, and often decades. Some of the most successful codes have gone through several
formal upgrades, with total project lifetime of twenty years or more.
The skill mix and management structure appear to vary substantially. Some of the academic
codes were produced by discipline scientists who picked up the requisite computer science
along the way. In many cases these codes were the brain-children of one or more committed
developers, who pushed the project along for many years through research grants or
institutional funding. The corporate and laboratory codes were usually developed with
structured development teams, more formal management, and funding arrangements to meet
internal commitments. Many of the commercial, proprietary codes were originally produced
in academic settings and spun off into various forms of profit-making company.

Several of the developers acknowledged that they had given insufficient attention to
computer science issues in designing their codes, largely because the teams tended to be led
by discipline scientists and engineers who were not computer science or software
engineering experts.

4. How do you determine the needs of users when developing codes in your area,
including insuring that the codes are easy to use by engineers?
The successful open-source codes typically have user communities of several hundred to
thousand users, not necessarily all active. The developers typically maintain online user
forums, manage email help services, hold user meetings, and conduct training programs to

 International Workshop on Scalable Engineering Software 9

assist these users. These user communities provide frequent and pointed feedback on bugs or
deficiencies. They also provide ideas for upgrades, and less frequently submit code for
inclusion in the package. User comparisons with other codes or with experimental data
provide ongoing informal verification and validation. The developers justify the effort of
supporting their user communities, often at no cost, as proof to the code funders that their
support is worthwhile. Developers of proprietary codes typically (but not always) pay more
attention to ease-of-use issues than do the open source developers.

 5. Please describe the approach you have taken with regard to verification and
validation of your code.
A wide range of models seem to be in use, partly depending on the institutional and funding
arrangements. Proprietary code developers maintain suites of test cases and work with users
to verify their codes. Many customers of commercial codes feel that they are paying (in part)
for verification and validation and therefore expect such codes to “just work” when given a
valid model. Expectations are often lower for non-commercial codes.
Where the new releases are aimed at higher efficiency or greater parallelization, the
verification may measure the extent to which the code gives the same answers as the
previous version. Validation is typically based on comparison of simulation data against
published experimental data. Industrial and national laboratory developers may compare
different codes running the same data for verification. They may also rely on in-house
experimental data for validation. Small developer groups, especially for open source codes,
rely significantly on their user bases for verification and validation. The larger the user base,
the greater the diversity of scientific problems that the code will be used for, leading to a
greater likelihood of users uncovering problems. Many of their academic users publish code
results as part of their research papers, including cross-code and experimental comparisons,
that the developers quote to support their claims for accuracy and correctness.

FUNDING MODELS

6. How are development and maintenance of codes in your area funded? Discuss factors
such as funding source, duration and stability, funder milestones, and funding to sustain
and maintain the codes after initial release.
All of the scalable codes showed evidence of patient, long term funding support. For the
smallest development teams the patience may come from the tenacity of one or two
developers who cobble together funding from different sources over many years to improve
and maintain their code. In several cases the funding was for research projects rather than
code development, but the developers were able to continue code development as part of
their research support. For the larger teams the patient funding came either from in-house
sources to develop corporate resources or from government sources that funded the code as
an important community resource. All of the successful codes had been funded for at least a
decade or more.
Code maintenance also required patient funding. Several code developers stated that the
existence of large, satisfied user communities using the code for important projects helped to
justify funding for code maintenance and improvement, even if no users actually helped fund
the code.

International Workshop on Scalable Engineering Software 10

For proprietary codes the market place determined funding rate and stability. Again,
successful codes required long-term funding based on acceptance of the code in the market
place. One difference that was observed is that the boundaries between government and
corporate entities and funding sources are much less rigid in Europe than in America. It is
easier for for-profit companies to obtain direct government funding to support software
research and development, and easier for both commercial and non-profit institutions to
leverage both government and commercial funding to contribute to a software project. For
example, companies used government funding to maintain the core team and augmented it
with commercial funding for specific projects, some of which led to additional code being
open-sourced. In many cases the codes were open source, and the government funded them
as national resources.

7. How should development and maintenance of codes in your area be funded?

All of the code developers emphasized the importance of patient, long-term funding. For
codes developed by national laboratories and companies to meet internal needs long-term
internal funding is vital. Rapidly changing priorities and funding demoralize the group and
delay or kill the code. For codes developed to meet community needs the most common
model seemed to be sustained core funding from a long-term committed sponsor, augmented
by occasional short-term funding for specific projects, sometimes from private sources. For
proprietary codes the funding stream is from ongoing licensing fees, and the challenge is to
create sufficient value early in the development process to build a sufficient revenue stream.
(Many of the proprietary codes were originally developed in academic settings, and code
development was justified for particular research.)
Maintenance funding appears to be as important as developmental funding for successful
codes, and maintenance is as important as initial development for long-term code success.
Maintenance includes coding and algorithm improvements to enhance performance and
accuracy and extend the range of validity, providing new capabilities for users, porting to
new platforms, finding and fixing bugs, and testing before releasing new versions. Several
developers of community codes pointed to the value of good relationships with their user
communities in convincing their sponsors to continue funding. For proprietary codes
maintenance funding is essential to maintain license revenue.

Several participants pointed out a difference between open source and proprietary codes that
is partly based on user needs and resultant funding. Open source codes tend to put more
attention on performance and scalability, with less attention to ease of use issues and error
checking. Proprietary codes are often designed to be easy to use by bench engineers doing
projects under tight deadlines. As a result user interfaces are designed to be intuitive, data
setup is automated where possible, and input data is checked for consistency.

INTELLECTUAL PROPERTY MODELS

8. What type of license is appropriate for codes in your application area?
Workshop participants had very different views in this area. Those whose codes are offered
under an open source license, usually GPL, maintained that this was best because it
encourages broad use, with attendant discovery and elimination of bugs, demonstration to
funders that the code was in demand, and in some cases improvements in the code that are
placed in the code base. Those who offered commercial proprietary licenses maintained that

 International Workshop on Scalable Engineering Software 11

this is the only way to maintain control of the code and to ensure a continuing revenue
stream. Concerns were also expressed about the export control issues attendant in freely-
downloadable source code. One industrial participant pointed out that in most cases it is the
data that should be closely controlled, not the code. The data embodies trade secrets, national
security concerns, and other intellectual property more than does the code. Some industrial
participants pointed out that they were not very good at selling code, so getting out of that
business helps to focus on their real work. For some small companies the revenue from
supporting an open-sourced code exceeds that which they would otherwise receive from
licensing a proprietary code. By open-sourcing the code they build larger user communities,
create more name-recognition, and develop more funding opportunities.

9. Is binary-only availability suitable or should the source be available to users?
Some participants preferred binary-only availability because it lets the developer/maintainer
preserve control over the code. For proprietary codes this helps to preserve the economic
value of the code, and even for non-commercial (freely distributed) codes it avoids the
possibility that user modifications to the code might introduce bugs that are attributed to the
developer. Especially for proprietary codes the black-box nature of binary-only distribution
helps to preserve trade secrets that may be present in the algorithms or coding details.

10. What is or should be the role of open-source intellectual property and licensing (e.g.
gpl, bsd) for codes in your application area?

Participants who develop or use open-source codes agreed that this licensing model can be
very appropriate in some settings. Open source licensing encourages widespread usage and
can quickly build the reputation of codes in cases where licensing revenue is not a prime
consideration. Developers who offer their codes under open source licenses derive revenue
from government or corporate sponsors, consulting or maintenance contracts and paid
collaborative agreements. Open source removes the need for manpower to determine and
enforce licensing terms, especially for developers who do not expect to derive much revenue
from their codes. Several participants pointed out that the legal enforcement of terms in open
source licenses is as yet little tested in courts. Some developers use a hybrid approach,
offering the alternative of a free open source license or a paid proprietary license. The
advantage of the latter is that the licensee can extend the code to produce a proprietary
version without having to open-source the code it develops.

CODE MAINTENANCE AND UPGRADE MODELS

11. How should codes be maintained and/or upgraded in your application area?
Participants generally agreed that it is important for developers to maintain close contact
with their users, whether the code is open source or proprietary. Especially for open source
codes Internet-based tools such as forums and Wikis are widely used for this purpose. User
meetings and training sessions are also valuable sources for user feedback. Participants also
agreed that code maintenance, including interactions with users, should receive strong
attention. Many developers offered regular releases or upgrades, often several times
annually. User feedback on problem areas and user requests for enhancements can help to
guide the maintenance and upgrade priorities. Especially for codes intended to be scalable, it

International Workshop on Scalable Engineering Software 12

is important to incorporate as quickly as possible discipline discoveries of more easily
parallelized physical models or computer science improvements in parallelization
techniques. Code developers must be prepared to decide that an existing code has become so
unwieldy that it should be rewritten from scratch, even if this entails a major development
cycle.

12. What is the role of user input in code maintenance and upgrades, including ease-of-
use factors?
This question has been covered in several previous questions. In summary, developers
should offer several easy means for users to provide input into code usability and
enhancement, using both face-to-face and Internet-mediated techniques. Users will point out
shortcomings of the code as used on their problems, will occasionally report bugs, but in
general will not contribute code.
13. How do you decide whether to continue incremental improvements vs. complete
rewrite with substantial code changes?
This decision is based on developer resources, competitive pressures, user demands, and
technical feasibility. Developers tend to resist complete rewrites because they disrupt normal
activities. The emergence of radically improved new computational techniques (such as in
materials codes) may mandate rewrite if the code is to remain competitive. Developers often
respond to demands from users to run larger problems by incremental tuning of the code to
permit use of more processors, but this route usually leads to poorer efficiency. The
development of new processors, such as graphics processing units, may stimulate substantial
rewrite to achieve higher performance.

USER COMMUNITY MODELS

14. What forms of user involvement are most helpful in code development, testing,
maintenance, and upgrades?
This question has also been covered previously. The most commonly mentioned forms of
user involvement include bug reports, supplying verification/validation data based on their
use of the code, and suggestions for improvements and upgrades. Large, active user
communities for open source codes also provide powerful endorsement of the value of the
code to the organizations that fund the developers and may enhance the ability of the
developers to attract funding for special projects or collaborations. Especially for proprietary
codes that cater to bench engineers, user experiences can provide ease-of-use data for
improving user interfaces. For internal corporate or laboratory codes the close involvement
of developers with their users was also considered beneficial. This involvement could come
through training courses, help desks, planning meetings, and feedback sessions. Each
developer should spend some time in these activities.
Another distinctive characteristic of feature of the European environment is the stronger
connection between academia and industry. It is not uncommon for PhD-level students to
carry out their dissertation work at a large company, where they are paid as employees and
contribute to the development of software products. In the other direction, several speakers
discussed initiatives (often at least partly government supported) to introduce engineering
software into the educational curriculum. This is seen as having both educational advantages
and workforce development benefits.

 International Workshop on Scalable Engineering Software 13

15. What types of user community organizations are most helpful to insure that codes in
your application area meet user needs and are modified as necessary to meet those
needs?
No particular type of organization was preferred, but developers agreed that vibrant user
involvement was desirable. Especially for open source codes with large user communities a
multi-level approach was commonly recommended. This includes an online user forum in
which users can help each other, an email help facility, a Wiki containing manuals, tutorials
and other discussions, user meetings when new releases become available and otherwise
periodically, and user training courses (perhaps held at professional meetings.)

CONCLUSIONS

The workshop provided strong evidence that scalable engineering codes for realistic
problems in several disciplines can be developed that scale to hundreds, and in some cases up
to thousands, of processors. However, doing so appears to require that several important
factors be favorably aligned. These included an expert and committed development team
that pays attention to user needs, stable funding that is provided over more than a decade for
development, support and upgrades, use of scalable physics models and algorithms,
availability of suitable scalable software libraries and middleware, access to large computers,
code licensing terms that make it cost-effective for users to scale up their problems, regular
releases that include bug-fixes, improvements, and upgrades to the code, and a large and
vibrant developer-maintained user community that provides endorsement, support and
feedback.

The European presentations provided a striking insight: European government agencies
commonly provide long-term stable funding to companies to develop and maintain scalable
engineering codes deemed important to the country. The European codes presented at the
workshop were originally developed with government funding at universities or government
laboratories. Several of the development teams have since moved to companies, and they
have continued to receive government funding combined with private funding. All of these
codes are freely available to users who meet certain criteria (such as nationals of the country
that developed them or their collaborators); several are freely available to anyone as
downloadable open source. The United States government does not typically fund code
development in companies other than for specific government purposes, and these codes are
not usually available to general users.

Another insight from the discussion is that European funders and developers are comfortable
with very liberal licensing terms, in many cases making their codes freely downloadable
under the GPL open source license. Even Électricité de France, a government corporation
that designs, builds and operates that country’s nuclear reactors, has made its production
suite of engineering software freely available under the GPL. Some of these codes were
developed with partial funding from the French Commissariat à l’Energie Atomique. One of
the workshop participants indicated that EDF wished to make the codes more available but
didn’t want to be in the business of selling proprietary codes. As to the wisdom of releasing
the company’s design tools, he replied that the real value is in the data; this is not released.

 Appendix A. Agenda 14

APPENDIX A. AGENDA

June 2

9:00 Keynote: Why are we here, what are the issues, what we hope to learn
 Douglass Post, DoD HPC Mod Office

9:30 Session I: Descriptions of scalable engineering codes
David Nelson (Chair)
Computational Structural Mechanics
Thomas Zwinger, CSC Finland (Elmer)
Climate/Weather/Ocean Modeling
 Paul Selwood, Met Office UK (Unified Model)

Integrated Engineering Codes
Chirstophe Durand, EDF R&D France (Code Aster) (Presented by Bernholdt)
Computational Fluid Dynamics
Hrvoje Jasak, Wikki Ltd. UK (OpenFOAM)
Computational Biology, Chemistry, and Material Science
I.T. Todorov, STFC Daresbury Laboratory UK (DL_POLY)
Paolo Giannozzi, Università di Udine Italy (Quantum ESPRESSO)

1:05 Panel I: Scalable algorithm advances and barriers; development models, including
ease-of-use and workflow factors
Carl Dyka, NSWC – Dahlgren (Chair)

Bert de Jong, PNNL (NWChem)
Paolo Giannozzi, Università di Udine Italy (Quantum ESPRESSO)
Loren Miller, DataMetric Innovations

2:20 Panel II: Funding approaches; intellectual property models and issues
Joseph Gorski, Navy-Carderock, (Chair)

Marvin L. Alme, LANL
Robert Meakin, US Army (CFD)
Thomas Zwinger, CSC Finland

3:55 Panel III: Code maintenance and upgrade; user community involvement
Alex Larzelere (Chair)

Christopher Atwood, SNP (CREATE-AV)
Andre Ribes, EDF France (SALOME)
Gene Poole, CD-ADAPCO

http://wtec2.com/ScalableSoftware/docs/Presentations/01-DPostWTECTalk-3.pdf�
http://wtec2.com/ScalableSoftware/docs/Presentations/02-SES-Zwinger-Session1-06.02.10.pdf�
http://wtec2.com/ScalableSoftware/docs/Presentations/03-SES-Selwood-06.02.10.pdf�
http://wtec2.com/ScalableSoftware/docs/Presentations/03-SES-Selwood-06.02.10.pdf�
http://wtec2.com/ScalableSoftware/docs/Presentations/07-SES-Durand-CodeAster-06-02-10.pdf�
http://wtec2.com/ScalableSoftware/docs/Presentations/04-SES-Jasak-slides.pdf�
http://wtec2.com/ScalableSoftware/docs/Presentations/05-SES-Todorov-06.02.10.pdf�
http://wtec2.com/ScalableSoftware/docs/Presentations/06-SES-Giannozzi-Slide1-06-02-10.pdf�
http://wtec2.com/ScalableSoftware/docs/Presentations/08-SES-DeJong-06.02.10.pdf�
http://wtec2.com/ScalableSoftware/docs/Presentations/09-SES-Giannozzi-Slide2-06-02-10.pdf�
http://wtec2.com/ScalableSoftware/docs/Presentations/10-SES-Miller-Panel1.pdf�
http://wtec2.com/ScalableSoftware/docs/Presentations/11-SES-Alme-Panel2.pdf�
http://wtec2.com/ScalableSoftware/docs/Presentations/13-SES-Zwinger-Panel2.ppt�
http://wtec2.com/ScalableSoftware/docs/Presentations/15-Ribes-100521%20-IWSES%20-%20Panel%20III.pdf�
http://wtec2.com/ScalableSoftware/docs/Presentations/16-SES-Poole-Panel4-06.02.10.pdf�

 Appendix A. Agenda 15

June 3
9:00 Summary: What did we learn yesterday about successful scalable software

David Bernholdt, ORNL
9:45 Panel IV: Current U.S. situation (algorithmic advances and barriers; development

models, including ease-of-use and workflow factors; funding models; intellectual
property models including export controls; maintenance and user community)
Steven Payne, Navy - CNMOC (Chair)

Peter Cummings, Vanderbilt U.
Charbel Farhat, Stanford U.
Joe Jung, Sandia National Labs
Laxmikant (Sanjay) Kale, University of Illinois
Scott Morton, Eglin AFB

11:20 Lessons for creating and maintaining scalable engineering codes
Doug Kothe, ORNL

http://wtec2.com/ScalableSoftware/docs/Presentations/17-SES-wednesday-summaryV2.pdf�
http://wtec2.com/ScalableSoftware/docs/Presentations/18-SES-cummings.pdf�
http://wtec2.com/ScalableSoftware/docs/Presentations/19-SES-Farhat.pdf�
http://wtec2.com/ScalableSoftware/docs/Presentations/21-SES-Kale-2010_06.pdf�
http://wtec2.com/ScalableSoftware/docs/Presentations/22-SES-Morton06.02.pdf�
http://wtec2.com/ScalableSoftware/docs/Presentations/23-SES-Kothe%20Wrapup.pdf�

Appendix B. Participants 16

APPENDIX B. PARTICIPANTS

Marvin Alme, LANL

Christopher Atwood, CREATE-AV / Scaled Numerical Physics LLC

Ben Benokraitis, WTEC

David Bernholdt, Oak Ridge National Laboratory

Robert Bohn, NCO/NITRD

Clark Cooper, National Science Foundation

Peter Cummings, Vanderbilt U./ORNL

Wibe (Bert) DeJong, Pacific Northwest National Laboratory

Carl Dyka, Naval Surface Warfare Center - Dahlgren

Charbel Farhat, Stanford University

Patricia Foland, WTEC

Paolo Giannozzi, U. of Udine and IOM-CNR

Joseph Gorski, Naval Surface Warfare Center, Carderock

Matthew Grismer, Air Force Research Laboratory

Luanne Handley-Blair, HPCMP CREATE

Angela Harris, HPCMP CREATE

Cray Henry, HPCMPO/DOD

Thuc Hoang, DOE NNSA

Geoff Hodlridge, NNCO

Taimak Holland, WTEC

Myles Hurwitz, DoD HPCMP

Leland Jameson, National Science Foundation

Hrvoje Jasak, Wikki Ltd UK

Pat Johnson, Johnson Edits

Joseph Jung, Sandia National Laboratories

Appendix B. Participants 17

Laxmikant (Sanjay)Kale, U. of Illinois

Douglas Kothe, Oak Ridge National Laboratory

Alex Larzelere, U.S. Department of Energy (NE-71)

Robert Meakin, Pax River NAVAIR

Loren Miller, Data Metric Innovations, Goodyear (retired)

Eduardo Misawa, NSF

Scott Morton, Eglin AFB

David Nelson, WTEC

Ruth Pachter, Air Force Research Laboratory

Steven Payne, Navy

Gene Poole, CD-ADAPCO

Douglass Post, DoD HPCMO

André Ribes, EDF R&D

Thomas F. Russell, NSF

Paul Selwood, Met Office UK

Duane Shelton, WTEC

William Tang, Princeton U.

Ilian Todorov, STFC Daresbury Laboratory

Ralph Wachter, ONR

Thomas Zwinger, CSC - IT Center for Science

Elmer features
• Fluid Mechanics: RANS, VMS,

Reynolds, free surfacesy ,

• Structural Mechanics: non-
/linear elasticity, plates

• Heat Transfer: phase change

• Electro-MagneticsElectro Magnetics

• Accoustics: Helmholtz equation

• Quantum Chemistry: DFT

ElmerGUI ElmerSolver

Elmer modules
ElmerPost

28 Appendix C. Presentations

	Executive Summary
	Introduction
	Purpose of the Workshop

	Structure of the Workshop
	Areas addressed
	Session I: Descriptions of European scalable Engineering Codes
	Panels I - IV
	Scalable Algorithm Advance and Barriers
	Development approaches, including verification and validation, ease of use, and workflow factors
	Funding models
	Intellectual property models
	Code maintenance and upgrade models
	User community models
	Conclusions
	Appendix A. Agenda
	Appendix B. Participants

